炼钢- 精炼- 连铸钢中夹杂物控制
炼钢- 精炼- 连铸钢中夹杂物控制
王子铮
(本溪钢铁集团有限公司炼钢厂,本溪 117000)
摘 要:钢铁是我国基础设施的重要原材料,在汽车、建筑以及工业等领域有极其广泛的应用。随着我国现代化进程的加快,钢铁产品的需求量越来越大,对产品的纯度提出了更高的要求。文章从钢铁夹杂物的来源、分布及主要危害等方面阐述对炼钢- 精炼- 连铸钢的夹杂物控制的一些观点。
洁净钢并没有明确的定义,也没有科学的界定方式。一般情况下,洁净钢内含有少量的磷、氧、氮、氢以及硫类杂质物,因此需要加强对非金属夹杂物的合理控制,如硫化物和氧化物等。通常情况下,洁净钢有以下3 个特点:第一,钢铁中含有的氧含量相对较少;第二,所含的夹杂物尺寸和数量控制在理想范围内,且杂质物的分布情况良好;第三,脆性夹杂物的含量极少。因此,想要提高纯净钢铁的质量品质和性能,需要具备良好的纯净化技术,同时加强对先进设备和先进技术的引进工作。从20 世纪80 年代初期开始,在连铸钢、炼钢以及精炼的生产活动中,纯净化技术的应用显著提高了钢的洁净度。2000 年左右,日本生产的洁净钢包含的有害元素数量占比仅有0.005%;我国宝山钢铁股份有限公司所生产的洁净钢,也将有害元素控制在0.008% 左右。现阶段,随着交通建设、国防建设以及特种建设等方面对钢材的要求越来越高,对洁净钢的要求也越来越高,因此要求钢企不断提升洁净钢的洁净程度。
钢中的夹杂物以氧化物、硫化物以及氮化物等多种非金属化合物的形式存在,导致钢材结构不均匀。此外,由于夹杂的几何形状、化学成分、物理性能等因素的影响,导致钢材的力学性能和疲劳性能下降[1]。
钢中夹杂物的来源主要有两种:一是随着熔炼产生,也就是在出钢时融入了铁合金钢的脱氧剂,以及在浇注时掺杂了钢液和空气的二次氧化产物[2];二是外部引入的各种因素,也就是外来的包体,大多形状不规则、尺寸大、分布不均匀。
内生夹杂物主要在以下条件下发生。一是冶炼时,脱氧产物不能被完全排除,或者是浇注时温度降低,继续反应后产生的脱氧产物在钢中来不及浮起而残留,以小质点的形式分布在钢的基体组织,有的聚集成大颗粒(如Al2O3),有的在钢中呈固溶状态(如MnO、FeO),都是造成铸坯内部缺陷和表面裂纹的重要原因。二是出钢和浇注时,钢液暴露在空气中发生氧化反应,氧和钢中的元素相结合,生成二次氧化物残留在钢中;在连铸时产生大量夹杂物和疏松缺陷,导致产品质量下降。钢液凝固时FeS、FeO 等因钢液的“选分结晶”而产生,最后晶粒边界和树枝晶之间发生沉淀[3]。
为了控制和降低夹杂物,炼钢和连铸作业过程中采取的加工工艺措施主要有脱氧净化、钢包精炼、过滤净化、真空处理技术以及电磁净化等手段。
如果钢中的氧含量太高,会形成大量的氧化物和宏观夹杂物,从而对钢的品质造成不利影响。随着现代科学技术的进步,脱氧剂由单一的脱氧剂向复合脱氧剂过渡。采用复合脱氧剂会导致产品之间产生化合物或出现相互溶解的现象,从而降低产品的实际活性。脱氧剂是一种熔融化合物,熔点较低,易生成液体脱氧物。复合脱氧法可以减小脱氧剂在钢液中的界面张力,加速脱氧剂的脱氧率。复合脱氧剂的成分比较复杂,目前已知的脱氧剂有150 多种。钙作为一种优良的除氧剂,能实现深度脱氧和深度脱硫。
目前脱氧剂材料众多,如碱土金属复合材料、硅铁稀土合金以及锆二元合金等。在具体的应用过程中,四元脱氧剂能够充分发挥铼元素与钢材内氧、氮以及硫元素的亲和性。在铝脱氧钢中加入钙,可以使部分钙溶解在钢材中,并与固态的氧化铝产生杂物反应生成铝酸钙。在冶炼过程中,随着多种物质的加入,氧化钙的总量会加速富集,以降低液相线温度。除此之外,钙会与硫发生化合反应形成硫化钙。如果钢材中锰元素较多,也会生成硫化锰。复合脱氧剂能够清除大部分杂质物,且效果显著。
在钢液净化过程中,钙的净化效果比较好,既可以对其进行深脱硫,还能起到深脱氧的效果。钢液脱氧后,氧元素的含量较低,此时钙脱氧反应效果不佳。当氧化铝夹杂颗粒较多时,随着钙元素的扩散,钙与铝发生反应,对铝元素进行置换,使得氧化铝夹杂物表面富含的氧化钙数量会不断增加。如果氧化钙的含量大于25%,则会出现液态的钙铝酸盐,漂浮在钢液表层,而其余没有漂浮的夹杂颗粒数量较小,将残留在钢材内[4]。钙的应用不仅能有效解决脱氧问题,还能清除氧化铝夹杂物,可以提高钢水的流动性,改善浇筑过程中水口堵塞等问题。
20 世纪初,稀土对钢中夹杂物影响的研究显示,稀土能够改变钢材中夹杂物的形态。到了20 世纪70 年代,相关研究发现,如果能有效控制钢材内硫含量与稀土的比例,便可以有效降低钢材夹杂物比例。稀土可以与钢材内大量的有害元素之间保持良好的亲和性,产生化合物,清除钢液中的杂质,最终完成对钢水的净化。研究结果显示,加入稀土后,如果硫元素与稀土的百分比在25% ~ 33%,则稀土硫化物能够全面取代硫化锰与氧化铝等物质,实现夹杂物细化的效果。
射线法的炉外精炼有喷吹和喂线两类。喷粉技术是20 世纪60 年代在钢液中加入钙以及钙的主要成分;喂线技术可以改善微合金化的精确度,提高产品质量。炼钢所用的包芯线可分成线芯和外层两部分,以脱氧剂、粉末合金为主,外层采用低碳钢,厚度为0.3 ~ 0.4 mm。在实际生产中,工作人员利用转速控制器和长度计数器控制进料速率和进给量。
如果将一定数量的氩气注入钢液中会产生氩气泡,氩气泡中的氧、氮、氢分压为零,在钢液中溶解的气体经扩散聚合后排除。在此过程中,熔体的温度和组成变得更为均匀。吹氩设备一般可分成3 种:第一,用耐火材料封口吹气,常用顶吹氩枪;第二,采用多孔吹氩气,优点是可以有效解决单孔吹氩气的射流过于集中的问题;第三,氩气由安装在包底的透气砖完成。
为减少钢中夹杂物的产生,连铸保护浇铸技术和中间包冶金技术必不可少。为避免钢水由钢包进入中间包期间与空气接触,一般利用长水口通氩气进行密封或采用耐火材料箱进行保护浇铸。开浇前通过氩气对中间包进行吹扫,以减少开浇过程造成的钢水二次氧化。另外,为防止中间包钢水氧化,需及时加入中包覆盖剂,且保证覆盖剂加入量,使得钢水与大气形成物理屏障。结晶器是夹杂物去除的最后区域,夹杂物可以通过吸附在氩气泡或通过结晶器流场上浮到结晶器的保护渣中。对于夹杂物要求严格的钢种需控制塞棒和滑板氩气量,保证浇铸的同时防止因吸气形成氧化物夹杂[5]。